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* 
Multi-disciplinary research facilities are established for study of spatial search 

behaviors, combining approaches of experimental animal learning, neural network 

theory, and robotics engineering. Experimental results have informed neural 

network designs for spatial landmark learning and reasoning in various tasks of 

complex search. The neural network theoretical designs, in turn, have been used in 

the design of semiautonomous robotic devices capable of efficient search. 
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2. Original Objectives 
Initially, the aim of this project was to analyze in more detail the following aspects of the 

(a) cognitive mapping system and (b) the action system of models that perfom spatial cognitive 
tasks. 

Cognitive mapping system: 
1. Place discrimination. 

a. The cognitive mapping system will generate place representations whenever an 
unfamiliar spatial location is visited. 

b. Place discrimination will include a more detailed description of the processes 
that relate landmark (object) recognition, the computation of visual angles of the recognized 
landmarks, the perception of directional (local) views of the environment, and, finally, the 
integration of different local views into place representations. 

c. Place discrimination will be accomplished using extramaze or intramaze 
landmarks. 

2. Place interconnection. 
a. The cognitive map will represent not only adjacency, but also accessibility. This 

will allow the cognitive map will to represent different environmental constraints, such as opaque 
and tranparent walls, obstacles, etc. 

b. The cognitive map will represent not only accesibility but also distance and 
direction between places. 

3. Reward location: 
a. The cognitive map represents the location of food in the maze. 

Action system: 
1. Decision making. 

a. Instead of a fixed decision time, decision making rules will reflect a variable 
decision time as a function of the knowledge of the environment. 

2. Response-selection rules. 
a. Response-selection rules will replace VTE behavior and stimulus-approach rules 

when the maze is well learned. 
b. Response-selection rules will be inhibited when the fast-time prediction 

associated with a given response changes in response to changes in the structure of the maze. 
3. Environmental exploration. 

a. Exploration of the environment during global cognitive mapping will be a 
function of the knowledge of the environment (curiosity). 

4. Navigational dynamics. The model will describe acceleration, velocity, and position 
of the system as a function of time during spatial navigation. 

3. Status of the effort 
The unexpected early termination of the contract generated havoc among the personnel 

involved in the project. At the beginning of the project, we had a difficult time finding a 
postdoctoral student qualified for a job that requires knowledge of computer science, animal 



behavior, and neurophysiology. Finally, we hired Dr. Peter Williams in January of 1995. Initially, 
I trained Dr. Williams in the intricacies of modelling animal behavior, and we wrote some 
programs. Almost as soon as he started, we received the notification that the grant would be 
terminated in June, and he started searching for another job. 

We managed, however, to complete several of the original objectives of the project and 
even extended the enterprise to include the building of real robots that perform spatial learning 
and cognitive mapping. 

4. Accomplishments/New Findings 
1. Place discrimination. 

The cognitive mapping system generates place representations whenever an unfamiliar 
spatial location is visited. 

2. Response-selection rules. 
a. Response-selection rules will replace VTE behavior and stimulus-approach rules when 

the maze is well learned. We developed a sofisticated model capable of generating alternative 
responses in the presence of different cues and of modulating the intensity of these responses 
according to the location of the animal in the maze. For instance, given three alternative paths 
(A, B, and C) and three alternative approach responses, the model is capable of learning to 
approach A in spatial location X, B in spatial location Y, and C in spatial location Z. Or given 
two different motivations (thirst and hunger), the model is capable of learning to approach a 
water source when thristy and the food source when hungry performing the adequate response 
in each case. 

3. Searching Behavior 
One of the most important applications of spatial learning and cognitive mapping in 

searching behavior. In some cases the objective of a search behavior is to encounter and remove 
of all targets (Figure 1, Left Panel), in other cases the objective is to encounter and remove a 
group of selected targets to open a path between Start and Goal points (Figure 1, Right Panel). 

In both cases, several factors are important in guiding searching behavior: 
1. Item distribution: The targets can distributed (a) randomly (Figure 2, Panel A), 

(b) uniformly (Figure 2, Panel B), (c) in concentrated patches (Figure 2, Panel C), (d) in 
dispersed patched (Figure 2, Panel D), (e) with some spatial periodical probability. 

2. Search strategies: Alternative searching strategies include (a) random walks 
(Figure 3, Panel A) , (b) straight line walks, (c) moving around the perimeter and inwards to a 
central point in the search area (Figure 3, Panel B), (d) moving slowly and turning when the hit 
rate is high in order to stay within the boundaries of the patch (Figure 3, Panel C). 

3. Perceptual learning: The agent's ability to detect the targets improves as a 
function of recent encounters with similar items. 

4. Social cooperation: Search behaviors might benefit from social cooperation 
because a group of agents searching for a concentrated patch is more likely to encounter the 
patch than individual agents. Once the patch is found, all agents assemble at the found patch (See 
Figure 3, Panel D). We have designed a model of animal communication that will be applied to 



this task. 
5. Spatial learning: Rate of success might be improved by learning about the 

spatial location of the patch. We have designed a model of spatial learning that defines the 
location of the targets. Figure 4 (Top panel) shows that the location of the goal (G) is learned 
using only the visual angles to the square and round landmarks and, therefore, generalization 
surface A presents minima at G and G. After training, when the rat starts at S it reaches G, 
when the rat starts at S' it reaches the miror image of G, G. Figure 4 (Bottom Panel) shows that 
the location of the goal (G) is learned using both the visual angles to the square and round 
landmarks and the visual angles between the landmarks and, therefore, generalization surface A 
presents only one minimun at G. After training, when the rat starts either at S or S' it always 
reaches G. 

3.1. Formal Models of Searching Behavior 
We started studing formal models of searching behavior. The models analyze at a 

theoretical level strategies that optimize the search and maximize the rate of encountering the 
target. In general, models are defined by (a) the different tasks the agent can do simultaneously 
(searching or removing targets), (b) the probability of encountering a target in a patch, (c) the 
agents' ability to detect targets with increasing search velocity and increasing distance to the 
target. 

Formal models of searching behavior are important to (a) analyze optimal behavior under 
different constraints (limited energy or limited time to encounter a given percentage of targets) 
and (b) evaluate the performance of alternative network designs. 

3.2. Neural network models of search behavior 
We are simulating models that (a) use alternative searching strategies, (b) have different 

detection capabilities, (c) include or exclude spatial learning, and (d) include or exclude social 
communication, in (e) environments with different target distributions, 

We have started by designing different neural networks that control search behavior. 
These models search a simulated environment in which the targets are presented in a patch. A 
measure of the efficiency of the network is the rate of encounters with the targets (number of 
targets detected per unit of time). 

So far, we have analyzed several problems: 
1. We have compared different strategies against the simplest possible tactic, i.e., random 

walk. A very simple strategy that dramatically improves the efficiency of the search (in terms 
of time) is to make search speed a decreasing function of the rate of encounters (See Figure 5). 

2. We have designed a network capable of describing patch density at different points in 
space in a manner that is independent of the velocity of the search. The network is able to find 
the boundaries of the patch and to stay within those boundaries. 

3.3. Building and testing autonomous robots 
Based on computer simulated results, we are building small autonomous robots controlled 

by the same neural networks used in the simulations. The robots are able to search for and 
approach a source of light according to the internal state of the agent. We have now one small, 



inexpensive robots (see Figure 6) that we will use to test searching behavior in an experimental 
arena. The floor of the arena contains a set of targets (light bulbs) that can be distributed in 
alternative ways (see Figure 2) and can be "removed" (turn off) by the robot. 
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B. Consultative advisory functions to other DoD laboratories 
Dr. Christiane Duarte of the Naval Undersea Warfare Laboratory (US Navy) has been 

contacted and visited Duke in April 1996 to exchange information about spatial learning and 



cognitive mapping in animals and robots. We wrote a joint proposal for MURI. 

C. Knowledge resulting from our efforts is used. 
See B above. 

8. Inventions 
None. 

9. Honors/Awards 
Duke International Award 



SPATIAL LEARNING AND COGNITIVE MAPPING: 
A NEURAL NETWORK APPROACH 

Grant No F4920-94-1-0238 

Nestor Schmajuk, P.I. 

Columbia College of Chicago 
600 S. Michigan Avenue 

Chicago, IL 60605 

Period Covered 1 Jun 94- 31 Dec 95 

Abstract 

The aim of this project was to analyze in more detail the following aspects of the (a) 
cognitive mapping system and (b) the action system of computer models that perfom spatial 
cognitive tasks. Despite the early termination of the contract, we completed several of the original 
objectives and built small robots that perform simple spatial tasks. 

V* \ 



Figure 1. Left Panel: Spatial distribution of targets in the environment and movements within and 
between patches when all targets should be removed. Right Panel: Spatial distribution of targets in 
the environement and desired movement when the targets blocking the path between Start to Goal 
(lined patches) should be removed. 



Figure 2. Spatial distribution of targets. (A) Random, (B) Uniform, (C) Concentrated patches, 
(d) Dispersed patches. 



Figure 3. Search strategies. (A) Random walk, (B) Contracting square, (C) Patch-edge 
recognition, and (D) Social cooperation between Agents 1 and 2 when Agent 2 finds the target. 



Figure 4. Place learning. Top panel: The location of the goal (G) is learned using only the 
visual angles to the square and round landmarks and, therefore, generalization surface A presents 
minima at G and G'. After training, when the rat starts at S it reaches G, when the rat starts at 
S' it reaches the miror image of G, G. Bottom Panel: The location of the goal (G) is learned 
using both the visual angles to the square and round landmarks and the visual angles between 
the landmarks and, therefore, generalization surface A presents only one minimun at G. After 
training, when the rat starts either at S or S' it always reaches G. 
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Figure 5. Search Strategies. Time to encounter    95% of the targets using a random walk with 
(A) constant speed, (B) decreasing speed with successive encounters and initial speed of 20 
pixels/time unit, and (C) decreasing speed with successive encounters and initial speed of 10 
pixels/time unit. 
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Figure 6. Experimental Robot. Diagram of the robot designed to perform searching behavior. 
Sensor 1 is an ultrasonic detector that senses the presence of walls in the direction of movement of 
the robot. Sensor 2 is a photoreceptor that senses the presence of active targets. 


